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Abstract. The equilibrium configuration for the core of a [OlO](OOl) edge dislocation in an 
anthracene crystal has been calculated using the atom-atom potential method. A boundary 
condition has been examined in which molecular rotations were taken into account together 
with translational displacements on the basis of anisotropic elasticity. The dislocation had a 
spread-out shear misfit, and the width of the Burgers vector density at half peak height 
reached 6.2 times the magnitude of the Burgers vector. 

1. Introduction 

A (001)[010] slip system in anthracene crystals is dominantly operative, but a (001)[110] 
system is also operative (Robinson and Scott 1967, Kojima and Okada 1989). The elastic 
energies of [OlO] dislocations are the lowest of all the possible dislocation energies for a 
given Burgers vector (Kojima 1979). 

The equilibrium configuration for the core of a dislocation in a crystal of aromatic 
hydrocarbons was first calculated by Mokichev and Pakhomov (1982) for a [OlO](OOl) 
edge dislocation in a naphthalene crystal, using the atom-atom potential method (Silinsh 
1980, Pertsin and Kitaigorodsky 1987). The model used consisted of an inner layer of 72 
mobile molecules and an outer fixed layer, and was based on isotropic elasticity. 

In this paper we will report details of molecular configurations around a [OlO](OOl) 
edge dislocation in an anthracene crystal. We introduced molecular rotations into 
initial and boundary conditions to a linear approximation, as well as translational 
displacements, in terms of anisotropic elasticity, because the dimensions of an anthra- 
cene molecule are as large as the magnitude of the Burgers vector. A model of size 
sufficient to study a spread-out misfit in a crystal composed of the large molecules was 
adopted. Both the methods of static energy minimisation and of molecular dynamics 
were used to obtain equilibrium configurations. Orientational aspects characteristic 
of molecular crystals were studied. We were able to perform these time-consuming 
simulations with the aid of a supercomputer. 

2. Method 

2.1. Boundary conditions 

An anisotropic linear elasticity of the dislocation is used in the initial and boundary 
conditions. Translational displacements U in terms of anisotropic elasticity can be derived 
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Table 1. Calculated values of the elastic constants c,, 

Cil (10'' dyn cm-') ci, (10" dyn cm-') 

C11 12.40 Cl3 8.40 
c22 14.53 Cl5 1.38 
c33 20.13 c23 7.52 
C44 2.85 c25 1.90 

c66 3.39 c46 1.64 
c12 10.42 

c55 4.58 C j j  -5.03 

from the general equation given by Hirth and Lothe (1982): 

3 

-(1/2xi) A , ( n ) ~ ( n )  l n q n j  ( k  = 1 , 2  and 3) (1) 
n = l  

rln = x2 + P n X 3  (2) 
where A,(n), D(n)  and pn are determined from anisotropic elastic constants and the 
Burgers vector, and the dislocation line runs along the x axis. 

For the anthracene crystal with monoclinic symmetry (space group P2,/a, z = 2), 
we have 13 independent elastic constants. To estimate one elastic constant, we have 
to constitute a few lattices that have appropriate kinds of strains. Since strains are 
accompanied by molecular rotations, we have to search for orientational parameters 
corresponding to the minimum energy under the given strains. The lowest possible 
symmetry (space group P1) is assumed in strained lattices, with two independent mol- 
ecules in a unit cell. Since the centre of one molecule was located at the lattice point, 
variation of nine independent parameters (three translational degrees of freedom from 
the second molecule and six orientational parameters) was considered. A Newton 
technique was adopted to obtain a strained lattice with a minimum packing energy. The 
elastic constants are obtained by differentiating these energies numerically with respect 
to the strains. 

The functional form used for the atom-atom potential is the Buckingham function 

@L,(C,) = -A,/r6, + B ,  exp(-C,r,) (3) 
where r9 is the distance between non-bonded atoms and A ,  B and C are empirical 
parameters presented by Williams (1966) in set IV (Craig and Markey 1979, Dautant 
and Bonpunt 1986. Okada et a1 1989). The cut-off radius of interaction between atoms 
was 8 8, throughout this paper. The lattice constants evalulated using this potential were 
a o = 8 . 1 8 ~ 7 b o = 5 . 9 1 ~ , c o = 1 1 . 1 7 8 , , / 3 = 2 . 1 6 ,  8=1 .17 ,  @=1.11and1)=1.91, 
and the packing energy per molecule was 1.02 eV. In lattices with strain ~ 2 3  or which 
break the lattice symmetry P2,/a, the packing energies of the two kinds of molecule are 
different; one increases, the other decreases and their sum increases. 

Table 1 shows the values of the elastic constants cr, evaluated thus. These values are 
rather larger than the experimental values. The isotropic shear modulus pv, averaged 
following Voigt, is evaluated as 3.55 X 10lOdyncm-* from our calculated elastic 
constants, whereas it is evaluated as 3.16 X 1O'O dyn cm-* from the experimental values 
of Danno and Inokuchi (1968), and 3.07 X 10" dyn cm-2 from those of Afanas'eva and 
Miasnikova (1970). We also used all the other potential parameter sets cited by Pertsin 
and Kitaigorodsky (1987), but the differences between the calculated and experimental 
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Figure 1. A projection in the bc' plane of a perfect 
crystal. The influence on the dislocation energy of 
changing the position of the dislocation in the 
boundary condition was evaluated on the lines 
HH' and VV'. The position corresponding to the 
minimum energy is indicated by 0. The ( I I ,  1 2 ,  1 3 )  
denote lattice sites of molecules. 

Figure 2. The dislocation energy after relaxation 
versus the position of the dislocation for the 
boundary condition. The positions of the dis- 
location are on the line HOV in figure 1. 

values were of the same order. The changes in Euler angle per unit strain were also 
calculated. For the strains the relations between the Euler angles 
(Okada et a1 1989) of molecules at the corners of a basal unit lattice (1) and those at the 
centre (2) (e1 = n - 0 2 ,  = - G 2  and ql = ?G + q2)  were conserved and the symmetry 
P21/a was retained. For the other strains, the relations between the two 
kinds of molecule were not conserved. 

In addition to traiislational displacements, we introduce molecular rotations into the 
intial and boundary conditions to a linear approximation, because the dimensions of an 
anthracene molecule are as large as the magnitude of the Burgers vector. The strains 
can be derived from equation (1) and molecular rotations proportional to them are 
estimated from these strains and the changes in Euler angle per unit strain. Defor- 
mations, in general, are accompanied by rigid-body rotations (4 rot U) and these also 
cause molecules to rotate. The magnitudes of these rotations are estimated at the centres 
of the molecules, and these two kinds of molecular rotation are added. 

and 

and 

2.2. Model 
Our model for dealing with the relaxation of molecules around the dislocation consists 
of two layers. One is the outer rigid layer where molecules are held in the positions 
described above. The other is the inner layer, which consists of the relaxable molecules 
whose centres lie within a cylinder of radius Y,,] with its centre at the dislocation line. 

Figure 1 shows a projection in the bc' plane of a unit cell of a perfect crystal. The 
dislocation line runs along the a axis and the slip plane is parallel to the ab plane. 
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There are two extra molecular half-planes below the slip plane. In the direction of the 
dislocation, there are two non-equivalent planes, with molecules at the corner sites of 
the basal unit lattice and at the centre. In the perfect crystal of anthracene, there is a 
glide symmetry between these two kinds of molecule and the line VV‘ in the figure is in 
the glide plane perpendicular to the b axis. To simulate an infinitely long, straight 
dislocation, periodic boundary conditions are imposed along the dislocation line, 

To search for an appropriate position of the dislocation for the initial and boundary 
conditions, the centre of the dislocation was put at various points along the lines HH‘ 
and VV’ in the figure. The energies after relaxation were compared for these cases. 
Among the dislocations with centres on the line HH’, that with its centre at the point Ho 
has the lowest energy and that with its centre at the point HI has the highest energy. 
Among dislocations centred on the line VV’, that with its centre at the point 0 has the 
lowest dislocation energy and that with its centre at the point V’ has the highest. Figure 
2 shows the effect of changing the positions of the dislocations for the boundary condition 
on the energies after relaxation. In this estimation, the positions of the dislocations were 
on the line HoV and the value of the relaxation radius rrel was 8b, where b is the magnitude 
of the Burgers vector (=bo) .  The coordinate of the point 0 corresponding to the 
minimum energy was (y, 2) = (ab,, ich), where cb is a unit length of the c’ axis. 

In order to keep the calculation of the molecular rotations easy, we did not use the 
boundary-condition technique of making the displacements symmetric with respect to 
the plane through the centre of an edge dislocation (Cotterill and Doyama 1966); but 
the symmetry was obtained almost completely after relaxation as we will see later. 

2.3. Procedure of simulation 

To obtain the equilibrium configuration of molecules in the inner layer, we have tried 
both the methods of static energy minimisation and of molecular dynamics. In the static 
minimisation, a method of steepest descent is applied repeatedly until all matrices 
{d2EMR/dxidx,} become positive definite and remain so for about ten steps (where EMR 
denotes the energy of a molecular row parallel to the dislocation line). Then a Newton 
method is used to make convergence rapid. In the molecular dynamics, the crystal is 
quenched every time the total kinetic energy reaches a maximum (Gibson et a1 1960). It 
was confirmed that the two methods gave the same results as regards the molecular 
configurations. 

The upper limit of the convergence error was estimated to be 4 meV/a for the 
largest model with r,,, = 16b (96 A, 1062 molecules in the inner layer). Results of 
calculations, which will be given later, were obtained by the use of a model of this size. 

3. Results 

3.1. Equilibrium configurations around the dislocation 

Figure 3 shows a projection in the bc’ plane of molecular centres after relaxation, and 
equipotential curves Au around the dislocation; Au is the packing energy per unit lattice 
relative to that of a perfect crystal. It is obvious that the dislocation has a spread-out 
shear misfit along the slip plane, and that a rectangular region where the energies Au 
are almost equal exists around the centre of the dislocation. The plane AA’ through the 
centre of the dislocation is almost a symmetry plane. Curvatures of molecular planes 
parallel to the slip plane became very small in the core region after the relaxation. 
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Figure3. A projectionin the bc' plane of molecular centres after relaxation andequipotential 
curves Au (in eV). Crosses denote corner molecules and circles denote centre molecules. 

Equipotential curves became smooth only if the energies of a corner molecule and a 
centre molecule were summed, because the effects of the shear strain ~ 2 3  on the two 
kinds of molecule are different; for example, the energies of the molecules just below 
the slip plane are 30 meV (12 = -$), 45 (-l), 39 (-4), 47 (0), 33 (i), 33 (l), 51 (j), 39 
(2), 40 ($), 27 (3). The equipotential curves are slightly asymmetric in the core region, 
as pointed out for a naphthalene crystal by Mokichev and Pakhomov (1982). The high- 
energy region spreads widely, in contrast to the result for a naphthalene crystal. 

in the direction parallel to the slip plane was also 
calculated. The value of the strain is small even in the core region since the core spreads 
widely. Its maximum value is only 7% in the upper half-plane and its minimum value is 
-5% in the lower half-plane. 

Orientational aspects of molecules around the dislocation were investigatedin detail. 
The changes in the Euler angles are larger on the side with the extra half-planes than on 
the other. The changes in the Euler angles of the centre molecules in the plane just below 
the slip plane are shown in figure 4(a), and those of the corner molecules are shown in 
figure 4(b). It is obvious from these diagrams that the changes reach maxima, not at the 
centre, but at a distance 2b - 3b from the centre of the dislocation; A 0  = 6.5", A@ = 
4.6", A V  = 10.7". These values are about two-thirds of those for a naphthalene crystal 
calculated by Mokichev and Pakhomov (1982). Curves in ( a )  and (b )  indicate that there 
is some approximate symmetry between the corner molecules and the centre molecules 
with respect to the plane AA'. That symmetry is glide-symmetry-like; this may come 
from the fact that there is a glide symmetry between the two kinds of molecule in the 
perfect crystal and the shear stress around the dislocation is antisymmetric with respect 
to the plane AA'. It would be a true glide symmetry if the two kinds of molecule were 
distributed continuously in each plane. 

Figure 5 shows distribution densities of the Burgers vector along the basal slip plane, 
py and p x  (Viteck et a1 1971). The density after relaxation deviates substantially from 
that before relaxation in a wide range from the centre to about 8b. The core of the 

The distribution of the strain 
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Figure 4. Orientational aspects of molecules around the dislocation. (a )  Changes in Euler 
angles of the centre molecules in the ab plane just below the slip plane; and (b )  those of the 
corner molecules. 
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Figure 5. Distribution densities of the Burgers vector along the basal slip plane, p y  and p x ,  
Crosses: py before the relaxation; squares: py after the relaxation; triangles: pI after the 
relaxation. 

dislocation was not dissociated into two typical partials, but was spread out widely. The 
width of the core at half peak height is large, being 6.2b for the relaxed crystal, in 
comparison with 2b for the unrelaxed crystal. It is seen from px in the figure that only 
the molecules close to the centre of the dislocation deviate from the molecular plane, 
and that this deviation is small. 
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Figure6 Dislocation energies versus distance from the dislocation line: (a)  before relaxation, 
only translational displacements in elasticity; (b )  before relaxation, translational and 
rotational displacements in elasticity; ( c )  after relaxation, starting from (a ) ;  ( d )  after relax- 
ation, starting from (b) .  

3.2. Energy distribution 

The strain energy per repeated distance a. of an edge dislocation may be written as 

where Ed is called the pre-logarithmic energy factor, ro is called the effective core radius 
and R is the outer radius of a circular cylinder within which the energy is evaluated. The 
value of E, was estimated to be 0.60eV/ao from the anisotropic elastic constants 
obtained in section 2.1. 

The stored energies of the dislocation versus In R are shown in figure 6 for four 
different configurations. To evaluate the influence on the energy of the rotating mol- 
ecules for the boundary condition, the models with both the translational displacements 
and rotations, (b) and (d), and with only the translational displacements (a)  and (c), 
were used. The upper plots, (a) and (b), correspond to the configurations before 
relaxation. These display clearly that the effect of molecular rotations on the energies is 
very strong. The observed value for the slope of (b) was reduced to a seventh of that of 
(a) by rotating the molecules in the linear approximation; E d  (a) = 3.9 eV/a o ,  Ed(b) = 
0.60 eV/a o ,  The value of Ed (b) agrees very well with that of Ed given above. 

The lower plots, (c) and (d), correspond to the configurations after relaxation. The 
observed values for the slopes of (c) and (d )  were Ed(C) = 0.58 eV/ao and Ed(d)  = 
0.57 eV/aO, respectively. These values are slightly smaller than the value of E d  based on 
the elasticity. This results from the effect of the spread of the core extending far from 
the core, as figure 5 shows. The plots (c) have a kink at the relaxation radius, because 
this model has the outer fixed layer, where molecules are held in the same orientations 

w = E d  ln(R/ro) (4) 
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Figure 7. The bond length between the molecules B and B' and the Euler angle q~ of the 
molecule C as a function of model size. The positions of the molecules B, B' and C are shown 
in figure 3. The relaxation radii are 4b (68 relaxable molecules), 66 (144), 86 (266) and 166 
(1062). +, X :  with rotations. A ,  0: without rotations. 

as in a perfect crystal. Molecular rotations in the outer fixed layer, however, do not have 
so strong an effect on the energy of the inner relaxable layer when rIeI is as large as 16b. 

The effective core radius yo was estimated to be 0.536 from figure 6. The core radius 
cannot be determined accurately from figure 6 ,  but it is about 5b judging from figure 5 .  
This yields a core energy of 1.28 eV/ao , which is 125% of the packing energy per 
molecule in a perfect crystal. 

3.3. Effects of the boundary conditions 

To evaluate the effects of the boundary conditions, several runs were made using both 
types of boundary-with the rotations and without the rotations. In our case, the 
effects of the rotations and the model size are reflected in changes in length of some 
intermolecular bonds and in Euler angles of molecules in the core. The two of these that 
are the most marked are displayed in figure 7 for models of increasing size. Although 
even for thelarger model the bondlength and the Euler angle are stillvarying, differences 
between the largest model used and an infinitely large model will be of the order of 0.1 A 
(0.5%) in the bond length and 0.01 in the Euler angle q. The influence of rotating 
molecules becomes less important for models with rIel larger than 8b. 

The effects of model size on the Burgers vector density py were also examined. The 
complicated variations of py in the misfit region in figure 5 were barely affected for the 
model with rrel larger than 6b.  These variations would come mainly from the relationship 
between neighbouring molecules. Judging from the py curves for these four models, the 
model size rrel = 8b is sufficiently accurate for use in a qualitative calculation of the core 
structure. The effects on py of the molecular rotation were small in comparison with the 
size effects. 

The energy distribution was affected strongly by the model size. Especially in the 
smaller models, energies of molecules just near the centre of the dislocation became 
higher than those of the surrounding molecules. 



Simulation of an edge dislocation in anthracene 5497 

4. Discussion 

It was found that the edge dislocation in an anthracene crystal had a spread-out shear 
misfit along the slip plane. The distribution density p y  of the Burgers vector along the 
slip plane deviated substantially from that of the elastic solution in the wide range from 
the centre to a distance 8b. This seems to be a characteristic feature of aromatic crystals, 
because strains could not converge into a narrow region due to the large rigid bodies of 
the molecules. This dislocation had some symmetry, which looked like a glide symmetry. 

The influence on the core structure of rotating molecules in the outer rigid layer 
became less important for a model with a relaxation radius larger than 8b. The effects 
of the model size on the intermolecular bond lengths and the Euler angles are not 
negligible even for the model with the relaxation radius 16b. However, judging from the 
distribution density p y  of the Burgers vector, the model size with relaxation radius 8b is 
sufficiently accurate for a qualitative calculation of the core structure. 
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